
Specification and Design of an Industrial
Manufacturing Middleware

Frederik Gosewehr, Jeffrey Wermann, Waldemar Borsych and Armando Walter Colombo
Department of Technology

University of Applied Sciences Emden/Leer, Germany

Email: {frederik.gosewehr, jeffrey.wermann, waldemar.borsych, armando.colombo}@hs-emden-leer.de

Abstract—The European innovation project PERFoRM (Pro-
duction harmonizEd Reconfiguration of Flexible Robots and
Machinery) is aiming for a harmonized integration of research
results in the area of flexible and reconfigurable manufacturing
systems. Based on the cyber-physical system (CPS) paradigm,
existing technologies and concepts are researched and integrated
in an architecture which is enabling the application of these new
technologies in real industrial environments.

To implement such a flexible cyber-physical system, one of the
core requirements for each involved component is a harmonized
communication, which enables the capability to collaborate with
each other in an intelligent way. But especially when integrating
multiple already existing production components into such a
cyber-physical system, one of the major issues is to deal with
the various communication protocols and data representations
coming with each individual cyber-physical component.

To tackle this issue, the solution foreseen within PERFoRM’s
architecture is to use an integration platform, the PERFoRM
Industrial Manufacturing Middleware, to enable all connected
components to interact with each other through the Middleware
and without having to implement new interfaces for each. This
paper describes the basic requirements of such a Middleware
and how it fits into the PERFoRM architecture and gives an
overview about the internal design and functionality.

Index Terms—Middleware, Enterprise Service Bus, cyber-
physical systems

I. INTRODUCTION

The industrial manufacturing area is currently facing many

important challenges, which forces companies to invest in new

concepts and technologies for their manufacturing facilities.

On one hand, every company is always driven by the desire to

reduce their expenses related to the production. On the other

hand, customers are becoming more demanding, requesting

products with high customization while keeping low prices

and high quality. Product life-cycles are getting shorter and

in some areas a trend towards mass-customization is visible.

From the perspective of the manufacturer, this leads to various

challenges related to the production of the product. The

characteristic mass-production lines are often to static to deal

with this customization. This pushes manufacturers to invest in

more flexible systems, which allow an easy reconfiguration on

the shop floor while still maintaining an economically feasible

throughput.

Another aspect related to this paradigm shift in production

is the distribution of information in these systems. While

traditional production systems were able to produce the same

thing over and over again with little parametrization, these new

production systems are now in need of extensive interfaces to

allow for the change of programs and other process parameters

multiple times per hour and even during runtime. Furthermore,

the information about what needs to be produced needs to get

from the customer to the machine, usually by being transmitted

through an Enterprise Resource Planning (ERP) system and a

Manufacturing Execution System (MES). A standardized way

to communicate is essential to realize this new connectivity

requirements. This enables a easy reconfiguration of the shop

floor with little to no downtime when new production systems

are integrated.

This need for a coherent horizontal and vertical integration

and the increasing demand for flexibility and reconfigurability

has made an impact on the research work within the last

decade, since new scientific accomplishments in areas like

artificial intelligence are providing interesting concepts which

can be applied in the industrial world to tackle the upcoming

challenges. Important solutions viable for industrial applica-

tion include the cyber-physical systems paradigm and agent-

based or holonic systems. Under the terminology ”Industry

4.0” countries like Germany are funding research and innova-

tion actions to facilitate the integration of these concepts into

the industry, calling it the fourth industrial revolution. [1] One

of the key aspects of this is the digitalization of production

components.

Within the Factories-of-the-Futures program of Horizon

2020, the European Commission is investing in this area as

well. One of the projects targeting these topics is PERFoRM,

which specifically is aiming to harmonize existing research

results from various projects into one architecture, which

is applicable for industrial use and will be demonstrated

within the project in various industrial use cases. A core

component of this architecture is an Industrial Manufacturing

Middleware, which is used as a integration platform to enable

the communication between the various components foreseen

within the architecture. Thus, the Middleware is the enabler

for all of the aspects discussed above, making both an easy

vertical and horizontal communication possible, allowing the

parameterization of flexible production systems and integrating

discovery mechanisms for easy reconfigurability.

This paper will first give an overview about basic underlying

concepts for the Middleware in Section II, before specifying

the functionality and capabilities envisioned for a PERFoRM

compliant Middleware and how it acts within PERFoRM’s

architecture (Section III. In Section IV, these general func-

tionalities will then be detailed and derived into a specific

Middleware solution design. Section V will give a brief

overview about first tests and results using the Middleware. A

comprehensive summary about the presented results is given in

Section VI, where also an outlook to future work is presented.

II. STATE-OF-THE-ART

This section is presenting the current state of the art in the

area of flexible and reconfigurable production systems by giv-

ing an overview about Industrial Cyber Physical Systems and

the concept of Service-oriented Architectures. It furthermore

explains the function of a Middleware in general.

A. Industrial Cyber-Physical Systems

During the last years the number of cyber-physical systems

(CPS) is increasing steadily. A CPS is a physical component

with mechanic and/or electronic parts and a cyber component,

which in general is a communication interface and software

for certain intelligence [2]. When applying this principle to an

industrial context, it is referred to as Industrial Cyber-Physical

Systems (ICPS). ICPS allows machines to communicate with

each other, react to events or to notify other production related

areas (e.g. storage for supply or maintenance, in case of distur-

bances). In order to promote reconfigurability, to avoid hard

wiring and to make plug and produce possible, components

in ICPS production environment should expose information

about themselves (e.g. sensor data, status, hardware and soft-

ware information, etc.). This allows a participant to access

a digital twin of such machine and calculate possibilities and

limitations of that, to finally make a decision which component

to use for a specific task. [3]

For collaboration of different ICPS components communi-

cation is necessary. Nowadays there is no standard protocol,

path or principle of communication for indusstrial components

and ICPS, which is making the realization of an ICPS more

complicated. A possible solution to this problem is the imple-

mentation of a Middleware.

B. Service-Oriented Architecture

Service oriented Architecture (SoA) is a software concept in

which processes or process chains are stored behind a simple

service call. The basic idea is that the caller of a service

(consumer) is not interested in the process itself but in the

result. The interface of the service is provided to consumers

in order to abstract the processes, which are running in the

background. This service is a single, atomic task for the

consumer. SoA is a very popular concept in IT and is getting

increasingly interesting for industrial application. By following

the SoA principle, information can be provided from the shop-

floor up to manufacturing operation system levels directly, thus

flattening the previously strict hierarchy.

With SoA, the consumer can also receive the information

from a provider, compare these with the requirements and

data of other providers of the same service, and decide

which industrial component is suitable for the particular task.

However, to use services the consumer has to use the same

technology as the provider and needs to discover the available

provider with its services. As there are multiple different SoA

technologies available, which might need to operate together,

it is necessary to create an integration platform, which supports

all SoA based technologies.

SoA design and implementation was a major research task

in previous international projects, namely SOCRADES [4],

IMC-AESOP [5], ARUM [6], etc. Overall these concept have

shown good results within industrial environments in terms of

machine collaboration, production plant reconfigurability and

performance.

C. Middleware

In Computer Science, the term “Middleware” describes a

software layer or component, which allows different software

applications to interact with each other. Typically, large sys-

tems consist of many different software applications, which –

in most cases – do not provide specific interfaces to each other,

but implement individual interfaces. A Middleware is used

in these cases to make these interfaces fit together. This can

be useful as an additional component on top of an operating

system, which will link different applications in one computer

together, but is also useful in networked systems, where the

applications are running on separate hardware. The advantage

for the developer of software is, that he no longer needs to

implement specific interfaces to each software it needs to

interact with, but only one interface, which the Middleware

can handle (see Figure 1). [7]

Fig. 1. Strong and loose coupled system interconnection with and without
intermediate middleware

Middleware solutions are especially useful in areas, where

a lot of different software applications need to work together

and an easy integration of new components is important. The

industrial world is currently undergoing a major shift, where it

becomes increasingly important that each hardware component

is expanded with an intelligent software component and a

communication interface to form a cyber-physical component.

An industrial environment can therefore offer a multitude of

very different software systems, starting from low-level smart

sensors and machines, to production planning and scheduling

software, up to business planning systems. Therefore, Middle-

ware solutions are also becoming more and more necessary

for industrial systems.

III. MIDDLEWARE SPECIFICATION

To apply these concepts into the PERFoRM environment,

this section will discuss the PERFoRM architecture and how

a Middleware is used within the architecture. The core func-

tionalities of a PERFoRM compliant Middleware will then be

specified.

A. PERFoRM Architecture

Figure 2 shows the PERFoRM system architecture as de-

scribed in [8]. The architecture was built on the experiences

and results from various previous research projects, such

as SOCRADES, IMC-AESOP or ARUM. The architectural

design is based on a service-oriented approach to match the re-

quirements for flexibility and reconfigurability with distributed

and heterogeneous hardware and software components, as

envisioned within PERFoRM.

Fig. 2. PERFoRM Project architecture [8]

The architecture is representing different components of

an industrial enterprise and how they are connected with

each other. Within the architecture, the following architectural

elements are foreseen:

• Legacy Tools

• Technology adapters

• Standard Interface

• PERFoRM-compliant Tools

• PERFoRM Middleware

The legacy tools are all hardware and software components,

which are not developed directly within the PERFoRM project

and therefore need to be integrated and adapted in some way to

fit PERFoRM’s architecture. Legacy tools can exist on the shop

floor level, where typically PLCs, RCs and other machines

need to be considered, but also on IT-level software, such as

ERP or MES. For each of these tools, tool-specific adapters

need to be developed to expose its data and interfaces in a

PERFoRM compliant way, which is defined by the standard

interfaces and the data model.

The standard interfaces are standardized within PERFoRM

to have a defined way to describe how data can be accessed.

They provide a set of services, which can be implemented

by the adapters. Furthermore, a data model for the semantic

description of data is specified. To find the right data model, an

assessment of multiple popular already existing data models

has been carried out and AutomationML was selected as the

base for PERFoRM’s data model (PML), which extends Au-

tomationML with additional models required for PERFoRM

[9].

These standard interfaces need to be implemented as a

service, following the SoA paradigm. For the legacy tools, the

technology adapters are attached with additional wrappers to a

service interface. Tools, which are developed within the project

directly are expected to implement the standard interfaces.

As the service technology to use is not explicitly specified,

a multitude of implementations is possible, e.g. REST, SOAP,

MQTT or OPC-UA.

The role of the Middleware is to enable the communication

between all of the aforementioned components, by ensuring a

secure and reliable connection. Additionally it is acting as a

broker/mediator between the communication partners, allow-

ing components, which communicate using different protocols

(e.g. REST and MQTT), to interact with each other.

B. PERFoRM Middleware features

After defining the general role of the Middleware in the

context of PERFoRM’s architecture, it is necessary to discuss

the core functionality, which a PERFoRM-compliant Middle-

ware is required to include. Figure 3 is showing the five main

features of the Middleware with related detailed functionality.

Fig. 3. Required middleware capabilities and features

1) Data Aggregation: Data Aggregation is the integral

feature of the Middleware, meaning that it is able to send and

receive data from various sources, such as hardware devices

or software applications. Data acquisition methods such as

polling data or subscribing to data changes need to be possible.

The Middleware needs to be able to temporary buffer data

during the transmission and to allow data compression by only

storing important data.

2) Data Processing: After data has been received, the Mid-

dleware must be able to process said data before transmitting

it to its destination. This includes basic routing functionalities,

where the Middleware has to be configured in a way which

specifies the various destinations an incoming message needs

to be send to. Furthermore, it must be possible to not only

redirect the message, but also to transform the message. This

is necessary, when protocols or data formats need to be

translated.

3) Data Presentation: The Middleware has to be able

to deal with various ways how data can be represented.

As the PERFoRM Middleware is part of a SoA, the most

important data presentation is in the form of Web services (e.g.

REST or SOAP). Since the Middleware is used for industrial

applications, it also requires direct access to data points, which

are not represented as a web service, as it can be found in OPC

Classic and OPC UA implementations.

4) Data Publication: A Middleware is targeting a loose

coupled approach, where individual applications do not neces-

sarily need to know details about each other. It additionally can

provide services to publish and discover connected services.

This means, that each component, which acts as a server and

provides a service (either web service or a simple data point)

can register said service within the Middleware. Other compo-

nents are now able to discover this service by using discovery

mechanisms. This way, applications can interact with each

other dynamically and find each other during run-time without

having to pre-configure to which exact communication partner

it must connect to.

5) Data Protection: An important issue of all networked

systems is the security. The Middleware must provide mecha-

nisms to ensure a secure communication between all connected

components. This includes the transmission security, which

can be achieved by using various data encryption and other

secure transmission methods. Furthermore, it is necessary to

ensure controlled access to data, by being able to regulate

which application can use a specific service or access a specific

data point. Additionally, the Middleware itself must be secure,

so that only restricted personnel can (remotely) re-configure

the Middleware.

IV. MIDDLEWARE DESIGN

Considering previously mentioned aspects, a first evaluation

of already existing Middleware solutions has been carried

out and published in [10]. The most promising solutions are

building the foundation of the specific Middleware design,

which will be described in the following section.

A. Basic Middleware integration model

During the previous Middleware assessment [10] it became

clear that there was no perfect fitting Middleware usable for

any possible use case. Therefore instead of implementing all

use cases on only one specific industrial Middleware system,

a new approach was chosen with the goal to integrate arbitrary

Middleware systems and concepts into a common external

representation. This would allow for easy integration of any

Middleware, as missing requirements are supplemented by

the integration layer. As such integration layer is itself also

only a service (of services), it could also run distributed

throughout the network and hence would be able to integrate

multiple different Middleware systems, e.g. one for the ERP-

and another for the shop floor level, utilizing the same kind

of external API and connection services for every connected

system providing or requesting services. Figure 4 shows the

whole model seen from an abstract perspective. As the whole

system is a service oriented one, there is no defined upper

and lower connection. All connected systems, supplying or

requesting services, can both connect to the adapter services,

which translate and transform the payload of a connected

systems, e.g. a robot, into the PERFoRM compliant PML

(PERFoRM Modeling Language) format or an incoming PML

payload into the domain specific language of that system, e.g.

robotic program language. Wiring these services together is the

job of the Middleware and therefore the service data model,

which is an extension of the PML, including web services

and Middleware description into the shop floor level oriented

PML data model. The whole approach aims for a data model

driven configuration, be it automatic or manual. The following

list defines the abstract methodology of the plug and produce

concept when registering a new service provider:

1) The provider system announces its service- and data

model to the Middleware.

2) Data model extension via manual inclusion at the right

data model tree node by the operator.

3) Mapping or extension of the external API to wire the

specific services to the external representation.

4) If needed, wiring of the adapters as intermediate pro-

cesses for incoming data to extend/enrich, transform

or translate the payload of connected service provider

(although Figure 4 shows the adapter directly connected

to a system, these adapters are in practice also services

and can run anywhere throughout the network).

5) The services can be discovered through querying the

service model API which returns a list of all Middle-

ware/router routing endpoint addresses.

Fig. 4. Abstract Middleware integration model

B. Distributed approach utilizing Micro Services

The model has been created with a cloud distributed ap-

proach in mind, which allows to distribute all parts of the inte-

gration layer throughout the network, depicted as ”Integration

Layer Service Cloud” in Figure 5. Such distribution of loosely

coupled Micro-Services does not only enable for an easier

maintain- and extendability but also includes currently used

cloud service functions through the uses of technologies like

Spring-Boot and Docker to encapsulate and isolate services

from each other and Kubernetes and OpenStack to orchestrate

these isolated containers within the infrastructure- and network

topology. This allows for better scalability of processing power

within the on-premises data center and therefore reduction of

overall expansion costs.

Fig. 5. Cloud based integration layer services following the Micro-Service
approach

C. DaaS - Data-Model-as-a-Service

When looking at the data model, which is the heart of the

PERFoRM architecture, as it defines both the connection of

systems as well as the services provided via the extended ser-

vice model, it would be bad design to strongly couple it with

the integration layer/Middleware. Such design is vulnerable to

failures as it creates a monolithic service provider where the

failure of one service might results in the whole system failing.

Therefore the PERFoRM data model uses a Micro-Service

approach instead, decoupling the service API (the view) from

the underlying persistence services (the business model). This

decoupling guarantees that changes to the service API do

not affect the persistence services and vice versa, which also

reduces the services needed, as persistence calls, which follow

the CRUD1 principle, can be reused to generate compound

services within the service API. The abstract model of the

approach is depicted in Figure 6.

V. TEST & EVALUATION

To test the whole approach a test case, using a real UR10

robot, has been implemented. It is the tests overall goal to use

a COLLADA CAD file to reprogram the robot while utilizing

a service oriented architecture. This tests does showcase the

loose coupled architecture, the resilient REST based Micro

Services cloud as well as the data model driven configuration

1Create, Read, Update, Delete

Fig. 6. Data model as object relational mapping service

and description of both services and payload data. Figure

7 depicts the different steps taken to query remote services

which service calls have been abstracted, not showing the

real REST calls, for readability purposes. Although the whole

approach could be fully automated with no intermediate op-

erator control, utilizing e.g. software agents instead, the test

case includes the human control influence to also showcase the

models capability to integrate the Human-in-the-Loop model.

This is an important factor for critical systems where human

supervision is mandatory for safety reasons.

Fig. 7. Middlware test case, service oriented discovery of available and
running programs

As depicted in the figure, the operator starts the process by

choosing a new program to run. This internal process call

does subsequently query the Middleware using its external

service API. The figure does thereby only depict the immediate

service calls. For simplicity, the service discovery to discover

which service to use is not shown. This discovery is handled

via querying the distributed Data-Model-as-a-a-Service service

provider, which presents the PML data model as fully search-

and queryable REST compliant database service, using object

relational mapping (ORM) internally. This does allow the

operators UI to filter for specific robots, e.g. with the same

model version or connected to the same manufacturing cell.

After having chosen the robot, the UI automatically issues

the updateRobotProgramTable service call, which is a com-

pound service, composed of the services returning the current

running program and all available programs (1). The first query

gets the identifier of the currently running program, which is

represented by the external REST API as robot/id/current. This

call is rerouted within the Middleware to the chosen robots

service provider connected to the Middleware and mapped

to the specific REST API call given (2). After returning the

current running program identifier (3), the operator UI next

queries the service to return the list of available programs.

This call is rerouted to the FTP service provider (4), which

forwards the query to the connected FTP adapter querying

the FTP service defined in the provided service model. The

response is a list of all program names usable with the given

robot id (5).

When this process finishes, the operator is allowed to change

the running program, indicated within the UI, to another one,

as depicted in Figure 8. This figure does also show more of

the actual implementation details, namely Apache ServiceMix,

which acts as Middleware and Apache CXF, with which the

web services, handling both SOAP and REST, have been de-

fined. When executed the updateRobotProgram service queries

the Middleware data model API with the robot and program

id as parameter (1). The Middleware reroutes this query to

the configured robot service provider (2) which itself queries

the Middleware’s robot program service robot/id/program/id,

which in turn routes the query to the robot program service

provider. This service subsequently returns the COLLADA

CAD file encapsulated within an PML object, serialized as

JSON or XML, back to the Middleware and from there to

the robot service provider. The adapter responsible for the

translation of the CAD file, given through the meta description

within the PML CAD object, is then queried. This transforms

the incoming CAD model into actual robotic control language,

here for an Universal Robots UR10 industrial robot. If the

program change was successful, the adapter returns a success

message to the service, which in turn returns this message to

the Middleware and from there back to the UI.

The whole setup is as loose coupled as possible to allow

for an easy, data model driven reconfiguration even during

operations. This makes it possible to maintain the whole

approach using continuous integration and DevOps method-

ologies, enabling Developers as well as operators to react

to changes quickly while maintaining software quality as

well as ensuring the availability of services. Utilizing Micro-

Services instead of monolithic ones ensures isolated test- and

maintainability and also reduces the severity of service failures

and unavailability.

VI. CONCLUSION & OUTLOOK

This paper has described the key role of the PERFoRM

Middleware within the PERFoRM architecture as an integra-

tion platform for the whole project, which is also applicable

to other application areas. It illustrated the key features,

which a Middleware solution must implement, to be compliant

with PERFoRM’s ideas and architectural design. The internal

design of the Middleware, which is based on a distributed

micro service approach and which is including existing Mid-

dleware solutions as a core is explained. The paper also

Fig. 8. Middlware test case, reconfiguration during runtime using service
oriented approach

demonstrates the concept of the ”Data-Model-as-a-Service” as

a flexible approach to include PERFoRM’s data model into the

Middleware. Additionally, the Middleware design is evaluated

with positive results in a simplified test case.

Upcoming steps for the Middleware implementation in-

clude extensive further testing of the concept itself and the

performance of its various implementations. To evaluate the

applicability to real industrial use cases, the Middleware will

be instantiated in PERFoRM’s test beds and use case scenarios.

ACKNOWLEDGMENT

This project has received funding from

the European Union’s Horizon 2020 re-

search and innovation programme under

grant agreement No 680435.

REFERENCES

[1] DIN Deutsches Institut für Normung e.V., “DIN SPEC 91345:2016-04:
Referenzarchitekturmodell Industrie 4.0 (RAMI4.0),” Berlin, 2016.

[2] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial
automation based on cyber-physical systems technologies,” Comput.
Ind., vol. 81, no. C, pp. 11–25, Sep. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.compind.2015.08.004

[3] R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen, “About the
importance of autonomy and digital twins for the future of manufactur-
ing,” IFAC-PapersOnLine 48-3 (2015) 567–572, 2015.

[4] A. W. Colombo and S. Karnouskos, “Towards the factory of the future: A
service-oriented cross-layer infrastructure,” in ICT Shaping the World:
A Scientific View. European Telecommunications Standards Institute
(ETSI), John Wiley and Sons, 2009, no. ISBN: 9780470741306, pp.
65–81.

[5] A. Colombo, Industrial Cloud-Based Cyber-Physical Systems: The
IMC-AESOP Approach. s.l.: Springer International Publishing, 2014.
[Online]. Available: http://lib.myilibrary.com/detail.asp?id=635192

[6] C. Marı́n, L. Mönch, P. Leitão, P. Vrba, D. Kazanskaia, V. Chep-
egin, L. Liu, and N. Mehandjiev, A Conceptual Architecture Based
on Intelligent Services for Manufacturing Support Systems, Man, and
Cybernetics, ser. SMC ’13. United States: IEEE Computer Society,
2013, pp. 4749–4754.

[7] Q. Mahmoud, Middleware for communications. John Wiley & Sons,
2005.

[8] P. Leitão, J. Barbosa, A. Pereira, J. Barata, and A. W. Colombo,
“Specification of the perform architecture for the seamless production
system reconfiguration,” in IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society, Oct 2016, pp. 5729–5734.

[9] R. S. Peres, M. Parreira-Rocha, A. D. Rocha, J. Barbosa, P. Leitão,
and J. Barata, “Selection of a data exchange format for industry 4.0
manufacturing systems,” in IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society, Oct 2016, pp. 5723–5728.

[10] F. Gosewehr, J. Wermann, and A. W. Colombo, “Assessment of industrial
middleware technologies for the perform project,” in IECON 2016 - 42nd
Annual Conference of the IEEE Industrial Electronics Society, Oct 2016,
pp. 5699–5704.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

